How to Stop the Progression of Metabolic Syndrome to CV events

Kim Ju Han

The Heart Center of Chonnam National University Hospital, Chonnam National University Research Institute of Medical Sciences, Gwangju, Korea
Metabolic syndrome

- Overweight
- Hypertension
- Insulin resistance/hyperglycemia
- Dyslipidemia
- Microalbuminuria
Obesity: an ill-defined modifiable cardiovascular disease risk factor

Global cardiovascular disease risk

- Obesity
 - BMI
- HTN
- DM
- Smoking

- Cholesterol
 - LDL
 - HDL
Features of the metabolic syndrome commonly found among viscerally obese patients

- Hypertriglyceridemia
- Low HDL-cholesterol
- Elevated apolipoprotein B
- Small, dense LDL particles
- Inflammatory profiles
- Insulin resistance
- Hyperinsulinemia
- Glucose intolerance
- Impaired fibrinolysis
- Endothelial dysfunction
The prevalent form of the metabolic syndrome

- Endothelial dysfunction
- Atherogenic dyslipidemia
- Hypertension
- Inflammatory profiles
- Insulin resistance
- Prothrombotic state
Glucotoxicity
- Oxidative stress
- AGE formation
- Hexosamine pathway
- Proinflammatory signaling

Lipotoxicity
- Oxidative stress
- Proinflammatory signaling
- Ceramide

Inflammation
- Proinflammatory factors (TNF-α, IL-1β, IL-6, PAI-1, CRP)
- Kinase & Transcription factors (JNK, IKKβ, IRAK, NK-Kb, AP-1)

Insulin Resistance
- Endothelial Dysfunction

Diabetes
- Obesity
- Dyslipidemia

CAD
- Hypertension
- Atherosclerosis
Insulin Resistance and Atherosclerosis

Genetics
- Metabolic Insulin Resistance
- Compensatory Hyperinsulinemia

Environment
- Lipotoxicity
- Glucotoxicity
- AGE
- Oxidative Stress

Vasoconstriction
- ↓NO, ↑ET-1, ↑VSMC

Inflammation
- ↓NO, ↑AngII, ↑IKKβ, ↑NKκB
- ↑TNFα, ↑IL-6, ↑VCAM-1, ↑ICAM-1

Thrombosis
- ↓NO, ↑PAI-1

ACCELERATED ATHEROSCLEROSIS

CAD, Stroke, Hypertension, CHF, Vascular Insufficiency
Relative risk of several cardiovascular disease outcomes associated with metabolic syndrome using WHO or NCEP-ATP III clinical criteria

<table>
<thead>
<tr>
<th>Outcome</th>
<th>No. Studies</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-Cause Mortality</td>
<td>6</td>
<td>1.35 (1.17 – 1.56)</td>
</tr>
<tr>
<td>CVD Mortality</td>
<td>6</td>
<td>1.74 (1.29 – 2.35)</td>
</tr>
<tr>
<td>CVD Incidence</td>
<td>8</td>
<td>1.53 (1.26 – 1.87)</td>
</tr>
<tr>
<td>CHD Incidence</td>
<td>8</td>
<td>1.52 (1.37 – 1.69)</td>
</tr>
<tr>
<td>Stroke Incidence</td>
<td>3</td>
<td>1.76 (1.37 – 2.23)</td>
</tr>
</tbody>
</table>
Intervention for metabolic syndrome

• **Life style modifications**
 – Dietary approaches
 – Exercise
 – Body weight reduction

• **Medications**
 – Drug targeting insulin resistance & hyperglycemia
 – Drug targeting dyslipidemia
 – Antihypertensive drugs
Links between the AMPK/malonyl-CoA fuel-sensing and signaling network and the metabolic syndrome

Obesity/diet

- Adiponectin
- Leptin
- Thiazolidinedione
- Metformin

Inactivity

Genetic

Altered malonyl-CoA/AMPK

Metabolic syndrome

Exercise

- Low calorie intake
Prevention of type 2 DM with LSM: Finnish Diabetes Prevention Study

• Subjects
 – Middle aged
 – Over-weighted
 – Impaired glucose tolerance
 – 74% metabolic syndrome

• Life style modification: weight reduction
 – Diet
 • Less saturated fat & cholesterol, much dietary fiber
 • Low calorie diet
 – Exercise
 • Moderate endurance exercise

Prevalence of metabolic syndrome

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th></th>
<th>Year 1</th>
<th></th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IG</td>
<td>CG</td>
<td>p</td>
<td>IG</td>
<td>CG</td>
</tr>
<tr>
<td>n</td>
<td>265</td>
<td>257</td>
<td>-</td>
<td>256</td>
<td>250</td>
</tr>
<tr>
<td>MS</td>
<td>74.0</td>
<td>73.9</td>
<td>0.913</td>
<td>58.0</td>
<td>67.6</td>
</tr>
<tr>
<td>AO</td>
<td>80.0</td>
<td>72.4</td>
<td>0.013</td>
<td>64.5</td>
<td>70.0</td>
</tr>
<tr>
<td>FBS↑</td>
<td>74.7</td>
<td>77.4</td>
<td>0.411</td>
<td>64.8</td>
<td>74.8</td>
</tr>
<tr>
<td>BP↑</td>
<td>80.0</td>
<td>80.1</td>
<td>0.937</td>
<td>69.5</td>
<td>70.8</td>
</tr>
<tr>
<td>HDL↓</td>
<td>54.5</td>
<td>51.4</td>
<td>0.286</td>
<td>48.6</td>
<td>52.4</td>
</tr>
<tr>
<td>TG↑</td>
<td>38.3</td>
<td>44.7</td>
<td>0.121</td>
<td>34.8</td>
<td>44.4</td>
</tr>
</tbody>
</table>

Ilanne-Parikka P et al. Diabetes Care 2008;31:805-7
Prevention of type 2 DM with LSM: Finnish Diabetes Prevention Study

Figure 1. Proportion of Subjects without Diabetes during the Trial.

Figure 2. Incidence of Diabetes during Follow-up, According to the Success Score.

Age-adjusted incidence rates (per 1000 person-years) of metabolic syndrome by thirds of Cardiorespiratory fitness in men and women

LaMonte, M. J. et al. Circulation 2005;112:505-12
Healthy food choice

• A wide variety of foods should be eaten
• Energy intake, adjusted to avoid overweight
• Encourage
 – fruit, vegetables, wholegrain cereals and bread, fish, lean meat, low fat dairy products
• Replace saturated fats with
 – above foods
 – with monounsaturated and polyunsaturated fats from vegetable and marine source
 – reduce total fat <30% of energy, of which less than 1/3 is saturated
• Reduce salt intake if blood pressure is raised by avoiding table salt and salt in cooking
 – Fresh or frozen unsalted foods
 – Avoid processed and prepared foods (including bread; high salt)

ESC guidelines for CVD prevention 2007;28:2375-414
Managing total CVD risk, Physical activity

- Stress that positive health benefit occur with almost any increase in activity
 - small amount of exercise have an additive effect
 - exercise opportunities exist in the workplace, for example by using stairs instead of lift
- Leisure activities that are positively enjoyable
- 30 min of moderately vigorous exercise on most days of the week
- Exercising with family or friends
- Sense of well-being, weight reduction, and better self-esteem
- Continued physician encouragement and support

ESC guidelines for CVD prevention 2007;28:2375-414
Modulation of insulin resistance

- Thiazolidinediones
- Metformin
- Acarbose
Systemic and cardiovascular beneficial and adverse effects of PPARγ

PPARγ ACTIVATION

+ INSULIN SENSITIVITY GLUCOSE UPTAKE
+ VASCULAR LESION FORMATION INFLAMMATORY MARKERS ENDOTHELIAL DYSFUNCTION BLOOD PRESSURE
+ OBESITY HEPATIC STEATOSIS
+ FLUID RETENTION FRACTURE

- CARDIAC HYPERTROPHY ↓
- SYSTEMIC BLOOD PRESSURE ↓
- GLUCOSE UPTAKE ↑

SYSTEMIC OEDEMA ↑
CONGESTIVE HEART FAILURE ↑

BENEFICIAL EFFECTS
ADVERSE EFFECTS
Thiazolidinediones: Pioglitazone and Rosiglitazone

- **Mechanism of action**
 - Enhance insulin sensitivity in muscle, adipose tissue
 - Inhibit hepatic gluconeogenesis
 - Reduce rate of beta cell dysfunction

- **Safety and efficacy**
 - Decrease HbA1c 1-2%
 - Adverse effects: edema, weight gain, anemia, peripheral fracture in women, macular edema (MI – rosiglitazone*)

- **Dosing**
 - Initial dose (monotherapy): 1/2 to 2/3 maximum; dosing, 1-2x/day
 - Maximum effective dose: maximum dose
 - Titration frequency: weeks to month(s)

Use no longer endorsed by ADA
Kaplan-Meier curves of event rates patients treated with **pioglitazone 45 mg/d vs placebo** in the PROactive study (patients with T2DM and CVD)

Primary composite end point
- All-cause mortality, MI, stroke, ACS, coronary or leg revascularization, leg amputation

Secondary composite end point
- All-cause mortality, MI, stroke

Circulation 2008;117:440-449
Effect of rosiglitazone on the risk of MI and death from cardiovascular causes

Table 4. Rates of Myocardial Infarction and Death from Cardiovascular Causes.

<table>
<thead>
<tr>
<th>Study</th>
<th>Rosiglitazone Group</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no. of events</td>
<td></td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small trials combined</td>
<td>44/10,285 (0.43)</td>
<td></td>
</tr>
<tr>
<td>DREAM</td>
<td>15/2,635 (0.57)</td>
<td></td>
</tr>
<tr>
<td>ADOPT</td>
<td>27/1,456 (1.85)</td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death from cardiovascular causes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small trials combined</td>
<td>25/6,845 (0.36)</td>
<td></td>
</tr>
<tr>
<td>DREAM</td>
<td>12/2,635 (0.46)</td>
<td></td>
</tr>
<tr>
<td>ADOPT</td>
<td>2/1,456 (0.14)</td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Risk of Myocardial Infarction and Death from Cardiovascular Causes for Patients Receiving Rosiglitazone versus Several Comparator Drugs.

<table>
<thead>
<tr>
<th>Comparator Drug</th>
<th>Odds Ratio (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metformin</td>
<td>1.14 (0.70–1.86)</td>
<td>0.59</td>
</tr>
<tr>
<td>Sulfonylurea</td>
<td>1.24 (0.78–1.98)</td>
<td>0.36</td>
</tr>
<tr>
<td>Insulin</td>
<td>2.78 (0.58–13.3)</td>
<td>0.20</td>
</tr>
<tr>
<td>Placebo</td>
<td>1.80 (0.95–3.39)</td>
<td>0.07</td>
</tr>
<tr>
<td>Combined comparator drugs</td>
<td>1.43 (1.03–1.98)</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Effect of pravastatin for development of CHD and DM in MS (WOSCOPS)

TABLE 3. Univariate and Multivariate Analyses of Metabolic Syndrome as a Predictor of CHD Events (Definite CHD Death or Nonfatal Myocardial Infarction) and New-Onset Diabetes

<table>
<thead>
<tr>
<th>Metabolic syndrome</th>
<th>Univariate HR (95% CI)</th>
<th>Multivariate HR (95% CI)§</th>
<th>New-Onset Diabetes Univariate HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolic syndrome</td>
<td>1.76 (1.44, 2.15)†</td>
<td>1.30 (1.00, 1.67)*</td>
<td>3.51 (2.47, 4.98)†</td>
</tr>
<tr>
<td>Age, 10 y</td>
<td>1.81 (1.51, 2.18)†</td>
<td>1.86 (1.54, 2.26)‡</td>
<td>1.09 (0.80, 1.48)</td>
</tr>
<tr>
<td>BMI, 5 kg/m²</td>
<td>1.13 (0.96, 1.31)</td>
<td>...</td>
<td>2.22 (1.78, 2.76)‡</td>
</tr>
<tr>
<td>SBP, 20 mm Hg</td>
<td>1.29 (1.17, 1.46)‡</td>
<td>1.17 (1.06, 1.32)†</td>
<td>1.22 (1.02, 1.49)*</td>
</tr>
<tr>
<td>DBP, 20 mm Hg</td>
<td>1.40 (1.15, 1.67)‡</td>
<td>...</td>
<td>1.37 (1.00, 1.88)</td>
</tr>
<tr>
<td>Triglycerides, log mmol/L</td>
<td>1.49 (1.17, 1.89)†</td>
<td>...</td>
<td>5.04 (3.34, 7.60)‡</td>
</tr>
<tr>
<td>LDL cholesterol, 38.7 mg/dL</td>
<td>1.22 (0.99, 1.50)</td>
<td>...</td>
<td>1.24 (0.87, 1.78)</td>
</tr>
<tr>
<td>HDL cholesterol, 7.7 mg/dL</td>
<td>0.79 (0.72, 0.87)†</td>
<td>...</td>
<td>0.69 (0.58, 0.81)‡</td>
</tr>
<tr>
<td>Chol:HDL ratio, 1 unit</td>
<td>1.21 (1.13, 1.29)†</td>
<td>1.13 (1.04, 1.22)†</td>
<td>...</td>
</tr>
<tr>
<td>CRP, log mg/L</td>
<td>1.36 (1.24, 1.49)‡</td>
<td>...</td>
<td>1.55 (1.32, 1.82)‡</td>
</tr>
<tr>
<td>Fasting glucose, 7.7 mg/dL</td>
<td>1.19 (0.98, 1.43)</td>
<td>...</td>
<td>7.65 (5.99, 9.31)‡</td>
</tr>
<tr>
<td>Pravastatin treatment</td>
<td>0.71 (0.58, 0.86)‡</td>
<td>0.70 (0.58, 0.86)‡</td>
<td>0.70 (0.49, 0.98)*</td>
</tr>
<tr>
<td>Current smoker</td>
<td>1.73 (1.42, 2.10)‡</td>
<td>1.73 (1.41, 2.11)‡</td>
<td>1.15 (0.82, 1.61)</td>
</tr>
</tbody>
</table>

SBP indicates systolic blood pressure; DBP, diastolic blood pressure.

*P<0.05, †P<0.01, ‡P<0.001 for 1-SD change or presence/absence of a categoric variable.

§Multivariate analysis considered metabolic syndrome together with classic risk factors (age, lipids, blood pressure, smoking).

RR for CHD in patients with MS 0.73 (95%CI 0.53-1.01)
≈
RR in patients without MS 0.69 (95%CI 0.54-0.89)

Influence of low HDL & high TG on CHD events: 4S

A
- Lipid Triad
- Isolated ↑LDL

B
- Lipid Triad
- Isolated ↑LDL

C
- Lipid Triad
- Isolated ↑LDL

D
- Lipid Triad
- Isolated ↑LDL

- Major coronary events
- Coronary mortality
- Total mortality
- Revascularization

Ballantyne CM et al. Circulation 2001;104:3046-3051
Reduction of CHD events by Gemfibrozil: Influence of BMI and baseline plasma TG

Laboratory Findings

<table>
<thead>
<tr>
<th></th>
<th>MS</th>
<th>Control</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n=1,182)</td>
<td>(n=808)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creatinine clearance (mg/dL)</td>
<td>74.1±43.2</td>
<td>67.8±27.8</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-MB (U/L)</td>
<td>187.2±251.6</td>
<td>190.2±229.6</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Troponin-I (ng/mL)</td>
<td>68.4±101.8</td>
<td>64.4±96.8</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cholesterol (mg/dL)</td>
<td>187.4±46.5</td>
<td>177.4±39.7</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triglyceride (mg/dL)</td>
<td>150.1±108.7</td>
<td>86.9±45.2</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDL-cholesterol (mg/dL)</td>
<td>120.8±41.1</td>
<td>114.0±39.0</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDL-cholesterol (mg/dL)</td>
<td>42.0±11.9</td>
<td>49.5±11.1</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hs-CRP (mg/dL)</td>
<td>24.3±116.9</td>
<td>28.0±129.9</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT-pro-BNP (pg/mL)</td>
<td>2887.4±6938.7</td>
<td>1843.9±3859.7</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Event</td>
<td>MS (n=1,182)</td>
<td>Control (n=808)</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------------------------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 m F/U</td>
<td>Cardiac death, n (%)</td>
<td>99 (8.4)</td>
<td>57 (7.1)</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-cardiac death, n (%)</td>
<td>4 (0.3)</td>
<td>2 (0.3)</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Myocardial infarction, n (%)</td>
<td>10 (0.9)</td>
<td>5 (0.6)</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Repeat PCI, n (%)</td>
<td>20 (1.7)</td>
<td>8 (1.0)</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CABG, n (%)</td>
<td>1 (0.1)</td>
<td>3 (0.4)</td>
<td>0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 m F/U</td>
<td>Cardiac death, n (%)</td>
<td>110 (9.3)</td>
<td>66 (8.2)</td>
<td>0.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-cardiac death, n (%)</td>
<td>6 (0.5)</td>
<td>5 (0.6)</td>
<td>0.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Myocardial infarction, n (%)</td>
<td>115 (1.3)</td>
<td>7 (0.9)</td>
<td>0.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Repeat PCI, n (%)</td>
<td>95 (8)</td>
<td>51 (6.3)</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CABG, n (%)</td>
<td>6 (0.5)</td>
<td>3 (0.4)</td>
<td>0.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 m F/U</td>
<td>Cardiac death, n (%)</td>
<td>113 (9.6)</td>
<td>67 (8.3)</td>
<td>0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-cardiac death, n (%)</td>
<td>8 (0.7)</td>
<td>11 (1.4)</td>
<td>0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Myocardial infarction, n (%)</td>
<td>16 (1.4)</td>
<td>10 (1.2)</td>
<td>0.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Repeat PCI, n (%)</td>
<td>104 (8.8)</td>
<td>62 (7.7)</td>
<td>0.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CABG, n (%)</td>
<td>7 (0.6)</td>
<td>4 (0.5)</td>
<td>0.77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Independent Predictors of In-hospital Death

Multivariate Logistic Regression Analysis

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Odds Ratio</th>
<th>95% Confidence Interval</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low EF (≤ 40%)</td>
<td>3.98</td>
<td>2.338–6.776</td>
<td><0.001</td>
</tr>
<tr>
<td>Old age (≥ 65 years)</td>
<td>3.69</td>
<td>1.856–7.345</td>
<td><0.001</td>
</tr>
<tr>
<td>Low HDL-cholesterol</td>
<td>2.38</td>
<td>1.340–4.223</td>
<td>0.003</td>
</tr>
<tr>
<td>Multivessel involve</td>
<td>1.48</td>
<td>1.080–2.030</td>
<td>0.016</td>
</tr>
<tr>
<td>NT pro-BNP (pg/mL)</td>
<td>1.46</td>
<td>0.823–1.578</td>
<td>0.113</td>
</tr>
<tr>
<td>Insulin resistance</td>
<td>1.51</td>
<td>0.857–2.650</td>
<td>0.154</td>
</tr>
<tr>
<td>Female gender</td>
<td>1.27</td>
<td>0.723–2.246</td>
<td>0.403</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1.23</td>
<td>0.566–2.691</td>
<td>0.597</td>
</tr>
<tr>
<td>Cr clearance (mL/min)</td>
<td>1.09</td>
<td>0.974–1.103</td>
<td>0.687</td>
</tr>
</tbody>
</table>
Diagnosis and Treatment of MS for the prevention of development of CV disease

- No single treatment
- No therapeutic trials targeting prevention of progression to CV disease in MS

- Advantage in certain populations who have multiple borderline risk factors
- Should emphasize early management of risk factors
Therapy of MS risk factors

<table>
<thead>
<tr>
<th>Therapeutic target</th>
<th>Goals and recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal obesity</td>
<td>5-10% Wt loss or Wt maintenance
 LMS with diet and increased physical activity
 Pharmacological wt loss therapy
 Bariatric surgery</td>
</tr>
<tr>
<td>Insulin resistance</td>
<td>Prevention of delay of progression to T2DM
 LMS and Wt loss as above
 Pharmacotherapy
 Treatment of DM
 Appropriate glycemic control</td>
</tr>
<tr>
<td>Metabolic dyslipidemia</td>
<td>LDL lowering as per NCEP:ATPIII goals
 If TG ≥200mg/dL, lower non-HDL to <30 mg/dL+LDL goal
 If HDL <40 mg/dL in men or <50 in women, consider therapy for HDL raising</td>
</tr>
<tr>
<td>Elevated BP</td>
<td>Goal <140/90 mmHg (<130/80 mmHg if DM or CKD)</td>
</tr>
</tbody>
</table>

Cornier et al. Endocrine Rev 2008;29:777-822
Multifactorial intervention and CVD in patients with type 2 DM

Intensive Therapy
1. Dietary intervention
2. Light-to-moderate exercise
 + Intensive Medications

Table 1. Treatment Goals for the Conventional-Therapy Group and the Intensive-Therapy Group.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Conventional Therapy</th>
<th>Intensive Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systolic blood pressure (mm Hg)</td>
<td><160 <135</td>
<td><140 <130</td>
</tr>
<tr>
<td>Diastolic blood pressure (mm Hg)</td>
<td><95 <85</td>
<td><85 <80</td>
</tr>
<tr>
<td>Glycosylated hemoglobin (%)</td>
<td><7.5 <6.5</td>
<td><6.5 <6.5</td>
</tr>
<tr>
<td>Fasting serum total cholesterol (mg/dl)</td>
<td><250 <190</td>
<td><190 <175</td>
</tr>
<tr>
<td>Fasting serum triglycerides (mg/dl)</td>
<td><195 <180</td>
<td><150 <150</td>
</tr>
<tr>
<td>Treatment with ACE inhibitor irrespective of</td>
<td>No Yes Yes Yes</td>
<td></td>
</tr>
<tr>
<td>blood pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspirin therapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For patients with known ischemia</td>
<td>Yes Yes Yes Yes</td>
<td></td>
</tr>
<tr>
<td>For patients with peripheral vascular disease</td>
<td>No No Yes Yes</td>
<td></td>
</tr>
<tr>
<td>For patients without coronary heart disease</td>
<td>No No No Yes</td>
<td></td>
</tr>
<tr>
<td>or peripheral vascular disease</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Multifactorial intervention and CVD in patients with type 2 DM
Comparison of risk factors

Metabolic risk factors
- BP↑
- DM/hyperglycemia
- Low HDL
- TG↑
- Obesity

Conventional risk factors
- BP↑
- DM
- Total cholesterol↑
- LDL↑
- Smoking
- Advanced age
- Male
- Family Hx. of premature CVS

Prevention
Young age
Elderly
Summary: Management of MS

Metabolic syndrome
- Body fat accumulation↓
- Insulin sensitivity↑
- Glucose tolerance↑
- Plasma LDL cholesterol↓
- Plasma HDL cholesterol↑
- Plasma TG↓
- Blood pressure↓
- Susceptibility to thrombosis↓
- Systemic low-grade inflammation↓
- Arterial endothelial function↑

T2DM↓
Atherosclerosis↓
Myocardial infarction↓
Ischemic stroke↓
PAD↓

Genetics
Age
Gender

Appl Physiol Nutr Metab 2007;32:76-88
• Therapeutic implications in MS to CVD (????)

• LSM is very important

• MS는 각개 격파 하자